Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong prapun@,siit.tu.ac.th
\section*{10 Continuous Random Variables}

Office Hours:

BKD, 6th floor of Sirindhralai building
Wednesday 14:00-15:30
Friday 14:00-15:30

Ex. rand function

- Generate an array of uniformly distributed pseudorandom numbers.
- The pseudorandom values are drawn from the standard uniform distribution on the open interval $(0,1)$.
- rand returns a scalar.
- $\operatorname{rand}(m, n)$ or $r a n d([m, n])$ returns an m-by- n matrix.
- rand (n) returns an n-by-n matrix

```
>> rand
ans =
    0.3816
>> rand (10,2)
ans =
0.7655 0.6551
0.7952 0.1626
0.1869 0.1190
0.4898 0.4984
0.4456 0.9597
0.6463 0.3404
0.7094 0.5853
0.7547 0.2238
0.2760 0.7513
0.6797 0.2551
```


Ex. Muscle Activity

- Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).

[http://www.adinstruments.com/solutions/education/ltexp/electro

Three Important Continuous RVs

Mean $=1$
Std $=1$
$\mathrm{N}=100$

Three Important Continuous RVs

Mean $=1$
Std $=1$
$\mathrm{N}=1,000$

Three Important Continuous RVs

Review: P [some condition(s) on $X]$

For discrete random variable,

8.13. Steps to find probability of the form $P[$ some condition(s) on $X]$ when the $\operatorname{pmf} p_{X}(x)$ is known.
(a) Find the support of X.
(b) Consider only the x inside the support. Find all values of x that satisfy the condition(s).
(c) Evaluate the pmf at x found in the previous step.
(d) Add the pmf values from the previous step.

$$
P[\text { some condition(s) on } \underset{\uparrow}{X}]=\sum_{\text {Discrete RV }} p_{X}(x)
$$

$P[$ some condition(s) on $X]$

- For discrete random variable,

$$
\left.\begin{array}{l}
P[\text { some condition(s) on } X \underset{\uparrow}{X}]=\sum_{\text {Discrete RV }} \overbrace{p_{X X}(\boldsymbol{x})}^{\text {probability mass function (pmf) }} \\
\underbrace{\text { Sum over all the } x \text { values that }}_{\text {satisfy the condition(s) }}
\end{array}\right)
$$

- For continuous random variable,

$$
\sum^{\mathrm{pmf} \rightarrow \mathrm{pdf}} \rightarrow \int^{2}
$$

$$
\begin{aligned}
& P[\text { some condition(s) on } X]=\int_{A} \overbrace{f_{X}(x)}^{\text {probability }} d x \\
& \text { satisfy the condition(s) }
\end{aligned}
$$

Support of a RV

- In general, the support of a RV X is any set S such that $P[X \in S]=1$.
- In this class, we try to find the smallest (minimal) set that works as a support.
- For discrete random variable,

$$
S_{X}=\left\{x: p_{X}(x)>0\right\}
$$

- For continuous random variable,

$$
S_{X}=\left\{x: f_{X}(x)>0\right\}
$$

World Map of Population Density

Thailand's Population Density

High

Low
https: / / www.researchgate.net/pu
blication/260378246 Climate-
Related Hazards A Method for
Global Assessment of Urban an
d Rural Population Exposure to
Cyclones Droughts and Floods

World Map of Population Density

World Map of Population Density

"Density"

- Density = quantity per unit of measure.
- Population Density $=$ number of people per unit area
- Location with high density value means there are a lot of people around that location.
- Given a region, we integrate the density over that region to get the number of people residing in that region.
- Probability Density = probability per unit "length".
- Given an interval, we integrate the density over that interval to get the probability that the RV will be in that interval.

pdf and cdf for continuous RV

$$
\begin{array}{lc}
P[a<X<b] \\
P[a<X<b] \\
P[a \leq X<b] \\
P[a<X \leq b] \\
P[a \leq X \leq b]
\end{array} \quad \frac{F_{X}(b)-F_{X}(a)}{} F_{X}(x) \equiv P[X \leq x]
$$

Sections 10.1-10.2

Discrete RV

- pmf: $p_{X}(x) \equiv P[X=x]$
- Two characterizing properties:
- $p_{X}(x) \geq 0$
- $\sum_{x} p_{X}(x)=1$
- $S_{X}=\left\{x: p_{X}(x)>0\right\}$
- $P[$ some condition(s) on $X]$

$$
=\sum_{\substack{\{\text { all the } x \text { values that } \\ \text { satisfy the condition(s) }\}}} p_{X}(x)
$$

- cdf is a staircase function with jumps whose size at $x=c$ gives $P[X=c]$.

Continuous RV

- $P[X=x]=0$
- pdf: $P\left[x_{0} \leq x \leq x_{0}+\Delta x\right] \approx f_{X}\left(x_{0}\right) \Delta x$
- Two characterizing properties:
- $f_{X}(x) \geq 0$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $S_{X}=\left\{x: f_{X}(x)>0\right\}$
- $\quad P[$ some condition(s) on $X]=$

$$
\int_{\substack{\text { all the } x \text { values that } \\ \text { satisfy the condition(s) })\}}} f_{X}(x) d x
$$

- cdf is a continuous function.

Chapter 9 vs. Section 10.3

Discrete RV

Continuous RV

$\mathbb{E} X=\sum_{x} x p_{X}(x)$	$\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x$
$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
$\mathbb{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)$	$\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x$

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2} \\
\sigma_{X} & =\sqrt{\operatorname{Var}[X]}
\end{aligned}
$$

Johann Carl Friedrich Gauss

German 10-Deutsche Mark Banknote (1993; discontinued)

- 1777-1855
- A German mathematician

Ex. Muscle Activity

- Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).

[http://www.adinstruments.com/solutions/education/ltexp/electro myography-emg-german]

Ex. Measuring the speed of light

- 100 measurements of the speed of light $(\times 1,000$ $\mathrm{km} /$ second), conducted by Albert Abraham Michelson in 1879.

Expected Value and Variance

"Proof" by MATLAB's symbolic calculation

```
>> syms x
```

>> syms m real
>> syms sigma positive
\gg int (1/(sqrt(sym(2)*pi)*sigma)*exp $\left(-(x-m) \wedge 2 /\left(2^{*} \operatorname{sigma\wedge } 2\right)\right)$, x, -inf, inf)
ans =
1
>> EX $=\operatorname{int}\left(X /\left(\operatorname{sqrt}(\operatorname{sym}(2) * p i)^{*} \operatorname{sigma}\right)^{*} \exp \left(-(x-m) \wedge 2 /\left(2^{*}\right.\right.\right.$ sigma^2)), X,-inf,inf)
EX =
m
>> EX2 $=$ int $\left(x^{\wedge} 2 /\left(\operatorname{sqrt}\left(\operatorname{sym}(2)^{*} p i\right)^{*}\right.\right.$ sigma $) * \exp \left(-(x-m)^{\wedge} 2 /\left(2^{*}\right.\right.$ sigma^2) $\left.), X,-i n f, i n f\right)$
EX2 =

sigma^2)*i)/2, $x==\operatorname{Inf})) /\left(2^{*} \operatorname{pi}^{\wedge}(1 / 2) *\right.$ sigma)
>> EX2 = simplify(EX2)
EX2 =
m^2 + sigma^2
>> $\operatorname{Var} X=E X 2-(E X)^{\wedge} 2$
VarX =
sigma^2

Gaussian Random Variable

Gaussian Random Variable

Gaussian Random Variable

SIIT Grading Scheme (Option 3)

 in Stanine

From the News

Higgs boson-like particle discovery claimed at LHC

日 COMmENTS (1665)
By Paul Rincon
Science editor, BBC News website, Geneva

Particle physics has an accepted definition for a discovery: a "fivesigma" (or five standard-deviation) level of certainty
The number of sigmas measures how unlikely it is to get a certain experimental result as a matter of chance rather than due to a real effect

They claimed that by combining two data sets, they had attained a confidence level just at the "five-sigma" point about a one-in- 3.5 million chance that the signal they see would appear if there were no Higgs particle.
However, a full combination of the CMS data brings that number just back to 4.9 sigma - a one-in-two million chance.

$$
\begin{aligned}
& \frac{1}{1-\Phi(5)} \approx 3.5 \times 10^{6} \\
& \frac{1}{1-\Phi(4.9)} \approx 2 \times 10^{6}
\end{aligned}
$$

Six Sigma

Six Sigma

- If you manufacture something that has a normal distribution and get an observation outside six σ of μ, you have either seen something extremely unlikely or there is something wrong with your manufacturing process. You'd better look it over.
- This approach is an example of statistical quality control, which has been used extensively and saved companies a lot of money in the last couple of decades.
- The term Six Sigma, a registered trademark of Motorola, has evolved to denote a methodology to monitor, control, and improve products and processes.
- There are Six Sigma societies, institutes, and conferences.
- Whatever Six Sigma has grown into, it all started with considerations regarding the normal distribution.

Six Sigma

Range around μ	Percentage of products in conformance	Percentage of nonconforming products
-1σ to $+1 \sigma$	68.26	31.74
-2σ to $+2 \sigma$	95.46	4.54
-3σ to $+3 \sigma$	99.73	0.27
-4σ to $+4 \sigma$	99.9937	0.0063
-5σ to $+5 \sigma$	99.999943	0.000057
-6σ to $+6 \sigma$	99.9999998	0.00000002

